

C++
STARTING OUT WITH

C++

T E N T H E D I T I O N

From Control Structures
through Objects

This page intentionally left blank

C++
T E N T H E D I T I O N

STARTING OUT WITH

C++

Tony Gaddis
Haywood Community College

From Control Structures
through Objects

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content

Copyright © 2021, 2013, 2010 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken,
NJ 07030. All Rights Reserved. Manufactured in the United States of America. This publication is
protected by copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions
department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson
Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this
work are the property of their respective owners, and any references to third-party trademarks, logos,
icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not
intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by
the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its
affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Gaddis, Tony, author.
Title: Starting out with C++ : from control structures through objects /
 Tony Gaddis, Haywood Community College.
Description: Tenth edition. | Hoboken, NJ : Pearson, [2021] | Includes
 index.
Identifiers: LCCN 2019059946 (print) | LCCN 2019059947 (ebook) | ISBN
 9780135921043 (paperback) | ISBN 9780135928349 (epub)
Subjects: LCSH: C++ (Computer program language)
Classification: LCC QA76.73.C153 G334 2021 (print) | LCC QA76.73.C153
 (ebook) | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2019059946
LC ebook record available at https://lccn.loc.gov/2019059947

ScoutAutomatedPrintCode

Print Offer
ISBN-13: 978-0-13-592829-5
ISBN-10: 0-13-592829-X

https://support.pearson.com/getsupport/s/contactsupport
www.pearsoned.com/permissions/
https://lccn.loc.gov/2019059946
https://lccn.loc.gov/2019059947

v

 Preface xvii

CHAPTER 1 Introduction to Computers and Programming 1

CHAPTER 2 Introduction to C++ 27

CHAPTER 3 Expressions and Interactivity 87

CHAPTER 4 Making Decisions 153

CHAPTER 5 Loops and Files 237

CHAPTER 6 Functions 309

CHAPTER 7 Arrays and Vectors 387

CHAPTER 8 Searching and Sorting Arrays 471

CHAPTER 9 Pointers 511

CHAPTER 10 Characters, C-Strings, and More about the string Class 565

CHAPTER 11 Structured Data 621

CHAPTER 12 Advanced File Operations 675

CHAPTER 13 Introduction to Classes 751

CHAPTER 14 More about Classes 849

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 941

CHAPTER 16 Exceptions and Templates 1023

CHAPTER 17 The Standard Template Library 1065

CHAPTER 18 Linked Lists 1169

CHAPTER 19 Stacks and Queues 1213

CHAPTER 20 Recursion 1271

CHAPTER 21 Binary Trees 1309

Appendix A: The ASCII Character Set 1339
Appendix B: Operator Precedence and Associativity 1341

v

Contents at a Glance

vi Contents at a Glance

Quick References 1343

Index 1345

Credit 1363

Online The following appendices are available at www.pearsonhighered.com/
cs-resources.

Appendix C: Introduction to Flowcharting
Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments
Appendix G: Binary Numbers and Bitwise Operations
Appendix H: STL Algorithms
Appendix I: Multi-Source File Programs
Appendix J: Stream Member Functions for Formatting
Appendix K: Unions
Appendix L: Answers to Checkpoints
Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: C-String Manipulation
Case Study 2: High Adventure Travel Agency—Part 1
Case Study 3: Loan Amortization
Case Study 4: Creating a String Class
Case Study 5: High Adventure Travel Agency—Part 2
Case Study 6: High Adventure Travel Agency—Part 3
Case Study 7: Intersection of Sets
Case Study 8: Sales Commission

www.pearsonhighered.com/cs-resources
www.pearsonhighered.com/cs-resources

vii

Contents

Preface xvii

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1
1.2 Computer Systems: Hardware and Software 2
1.3 Programs and Programming Languages 8
1.4 What Is a Program Made of? 14
1.5 Input, Processing, and Output 17
1.6 The Programming Process 18
1.7 Procedural and Object-Oriented Programming 22

Review Questions and Exercises 24

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27
2.2 The cout Object 31
2.3 The #include Directive 37
2.4 Variables, Literals, and Assignment Statements 39
2.5 Identifiers 43
2.6 Integer Data Types 44
2.7 The char Data Type 50
2.8 The C++ string Class 54
2.9 Floating-Point Data Types 56
2.10 The bool Data Type 59
2.11 Determining the Size of a Data Type 60
2.12 More about Variable Assignments and Initialization 61
2.13 Scope 64
2.14 Arithmetic Operators 64
2.15 Comments 72
2.16 Named Constants 74
2.17 Programming Style 76

Review Questions and Exercises 78
Programming Challenges 83

viii Contents

CHAPTER 3 Expressions and Interactivity 87

3.1 The cin Object 87
3.2 Mathematical Expressions 93
3.3 When You Mix Apples and Oranges: Type Conversion 102
3.4 Overflow and Underflow 104
3.5 Type Casting 105
3.6 Multiple Assignment and Combined Assignment 108
3.7 Formatting Output 112
3.8 Working with Characters and string Objects 122
3.9 More Mathematical Library Functions 128
3.10 Focus on Debugging: Hand Tracing a Program 133
3.11 Focus on Problem Solving: A Case Study 135

Review Questions and Exercises 140
Programming Challenges 146

CHAPTER 4 Making Decisions 153

4.1 Relational Operators 153
4.2 The if Statement 158
4.3 Expanding the if Statement 166
4.4 The if/else Statement 170
4.5 Nested if Statements 173
4.6 The if/else if Statement 180
4.7 The if Statement with Initialization 185
4.8 Flags 187
4.9 Logical Operators 188
4.10 Checking Numeric Ranges with Logical Operators 195
4.11 Menus 196
4.12 Focus on Software Engineering: Validating User Input 199
4.13 Comparing Characters and Strings 201
4.14 The Conditional Operator 205
4.15 The switch Statement 208
4.16 The switch Statement with Initialization 217
4.17 More about Blocks and Variable Scope 218

Review Questions and Exercises 222
Programming Challenges 227

CHAPTER 5 Loops and Files 237

5.1 The Increment and Decrement Operators 237
5.2 Introduction to Loops: The while Loop 242
5.3 Using the while Loop for Input Validation 249
5.4 Counters 251
5.5 The do-while Loop 252
5.6 The for Loop 257
5.7 Keeping a Running Total 267
5.8 Sentinels 270
5.9 Focus on Software Engineering: Deciding Which Loop to Use 271
5.10 Nested Loops 272
5.11 Using Files for Data Storage 275
5.12 Optional Topics: Breaking and Continuing a Loop 294

Review Questions and Exercises 296
Programming Challenges 301

 Contents ix

CHAPTER 6 Functions 309

6.1 Focus on Software Engineering: Modular Programming 309
6.2 Defining and Calling Functions 310
6.3 Function Prototypes 319
6.4 Sending Data into a Function 321
6.5 Passing Data by Value 326
6.6 Focus on Software Engineering: Using Functions in

 a Menu-Driven Program 328
6.7 The return Statement 332
6.8 Returning a Value from a Function 334
6.9 Returning a Boolean Value 342
6.10 Local and Global Variables 344
6.11 Static Local Variables 352
6.12 Default Arguments 355
6.13 Using Reference Variables as Parameters 358
6.14 Overloading Functions 365
6.15 The exit() Function 369
6.16 Stubs and Drivers 372

Review Questions and Exercises 374
Programming Challenges 377

CHAPTER 7 Arrays and Vectors 387

7.1 Arrays Hold Multiple Values 387
7.2 Accessing Array Elements 389
7.3 No Bounds Checking in C++ 401
7.4 The Range-Based for Loop 404
7.5 Processing Array Contents 408
7.6 Focus on Software Engineering: Using Parallel Arrays 417
7.7 Arrays as Function Arguments 420
7.8 Two-Dimensional Arrays 431
7.9 Arrays with Three or More Dimensions 438
7.10 Focus on Problem Solving and Program Design: A Case Study 440
7.11 Introduction to the STL vector 442

Review Questions and Exercises 456
Programming Challenges 461

CHAPTER 8 Searching and Sorting Arrays 471

8.1 Focus on Software Engineering: Introduction to Search Algorithms 471
8.2 Focus on Problem Solving and Program Design: A Case Study 477
8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 484
8.4 Focus on Problem Solving and Program Design: A Case Study 494
8.5 Sorting and Searching vectors (Continued from Section 7.11) 503

Review Questions and Exercises 506
Programming Challenges 507

CHAPTER 9 Pointers 511

9.1 Getting the Address of a Variable 511
9.2 Pointer Variables 513
9.3 The Relationship between Arrays and Pointers 520
9.4 Pointer Arithmetic 525

x Contents

9.5 Initializing Pointers 527
9.6 Comparing Pointers 528
9.7 Pointers as Function Parameters 530
9.8 Dynamic Memory Allocation 540
9.9 Returning Pointers from Functions 544
9.10 Using Smart Pointers to Avoid Memory Leaks 550
9.11 Focus on Problem Solving and Program Design: A Case Study 553

Review Questions and Exercises 559
Programming Challenges 562

CHAPTER 10 Characters, C-Strings, and More about the string Class 565

10.1 Character Testing 565
10.2 Character Case Conversion 569
10.3 C-Strings 572
10.4 Library Functions for Working with C-Strings 576
10.5 String/Numeric Conversion Functions 587
10.6 Focus on Software Engineering: Writing Your Own

 C-String-Handling Functions 593
10.7 More about the C++ string Class 599
10.8 Focus on Problem Solving and Program Design: A Case Study 611

Review Questions and Exercises 613
Programming Challenges 616

CHAPTER 11 Structured Data 621

11.1 Abstract Data Types 621
11.2 Structures 623
11.3 Accessing Structure Members 626
11.4 Initializing a Structure 630
11.5 Arrays of Structures 633
11.6 Focus on Software Engineering: Nested Structures 635
11.7 Structures as Function Arguments 639
11.8 Returning a Structure from a Function 642
11.9 Using Structured Binding Declarations with Structures 645
11.10 Pointers to Structures 647
11.11 Focus on Software Engineering: When to Use .,

 When to Use −>, and When to Use * 651
11.12 Enumerated Data Types 653

Review Questions and Exercises 664
Programming Challenges 670

CHAPTER 12 Advanced File Operations 675

12.1 File Operations 675
12.2 File Output Formatting 681
12.3 Passing File Stream Objects to Functions 683
12.4 More Detailed Error Testing 685
12.5 Member Functions for Reading and Writing Files 688
12.6 Focus on Software Engineering: Working with Multiple Files 696
12.7 Binary Files 698
12.8 Creating Records with Structures 703
12.9 Random-Access Files 707

 Contents xi

12.10 Opening a File for Both Input and Output 715
12.11 Working with the File System 720

Review Questions and Exercises 741
Programming Challenges 745

CHAPTER 13 Introduction to Classes 751

13.1 Procedural and Object-Oriented Programming 751
13.2 Introduction to Classes 758
13.3 Defining an Instance of a Class 763
13.4 Why Have Private Members? 776
13.5 Focus on Software Engineering: Separating Class Specification

 from Implementation 777
13.6 Inline Member Functions 783
13.7 Constructors 786
13.8 Passing Arguments to Constructors 791
13.9 Destructors 799
13.10 Overloading Constructors 803
13.11 Private Member Functions 807
13.12 Arrays of Objects 809
13.13 Focus on Problem Solving and Program Design: An OOP Case Study 813
13.14 Focus on Object-Oriented Programming: Simulating Dice with Objects 820
13.15 Focus on Object-Oriented Design: The Unified Modeling

 Language (UML) 824
13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 826

Review Questions and Exercises 835
Programming Challenges 840

CHAPTER 14 More about Classes 849

14.1 Instance and Static Members 849
14.2 Friends of Classes 857
14.3 Memberwise Assignment 862
14.4 Copy Constructors 863
14.5 Operator Overloading 869
14.6 Object Conversion 896
14.7 Aggregation 898
14.8 Focus on Object-Oriented Design: Class Collaborations 903
14.9 Focus on Object-Oriented Programming: Simulating the Game

 of Cho-Han 908
14.10 Rvalue References and Move Semantics 918

Review Questions and Exercises 929
Programming Challenges 934

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 941

15.1 What Is Inheritance? 941
15.2 Protected Members and Class Access 950
15.3 Constructors and Destructors in Base and Derived Classes 956
15.4 Redefining Base Class Functions 970
15.5 Class Hierarchies 975
15.6 Polymorphism and Virtual Member Functions 981
15.7 Abstract Base Classes and Pure Virtual Functions 997
15.8 Multiple Inheritance 1004

xii Contents

Review Questions and Exercises 1011
Programming Challenges 1015

CHAPTER 16 Exceptions and Templates 1023

16.1 Exceptions 1023
16.2 Function Templates 1043
16.3 Focus on Software Engineering: Where to Start When Defining Templates 1049
16.4 Class Templates 1050

Review Questions and Exercises 1059
Programming Challenges 1062

CHAPTER 17 The Standard Template Library 1065

17.1 Introduction to the Standard Template Library 1065
17.2 STL Container and Iterator Fundamentals 1065
17.3 The vector Class 1076
17.4 The map, multimap, and unordered_map Classes 1090
17.5 The set, multiset, and unordered_set Classes 1117
17.6 The tuple Class 1124
17.7 Algorithms 1131
17.8 Introduction to Function Objects and Lambda Expressions 1153

Review Questions and Exercises 1160
Programming Challenges 1165

CHAPTER 18 Linked Lists 1169

18.1 Introduction to the Linked List ADT 1169
18.2 Linked List Operations 1171
18.3 A Linked List Template 1190
18.4 Variations of the Linked List 1201
18.5 The STL list and forward_list Containers 1202

Review Questions and Exercises 1207
Programming Challenges 1209

CHAPTER 19 Stacks and Queues 1213

19.1 Introduction to the Stack ADT 1213
19.2 Dynamic Stacks 1231
19.3 The STL stack Container 1241
19.4 Introduction to the Queue ADT 1243
19.5 Dynamic Queues 1256
19.6 The STL deque and queue Containers 1263

Review Questions and Exercises 1266
Programming Challenges 1268

CHAPTER 20 Recursion 1271

20.1 Introduction to Recursion 1271
20.2 Solving Problems with Recursion 1275
20.3 Focus on Problem Solving and Program Design: The Recursive gcd

 Function 1283
20.4 Focus on Problem Solving and Program Design: Solving Recursively Defined

 Problems 1284

 Contents xiii

20.5 Focus on Problem Solving and Program Design: Recursive Linked List
 Operations 1285

20.6 Focus on Problem Solving and Program Design: A Recursive Binary Search
 Function 1289

20.7 The Towers of Hanoi 1291
20.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1294
20.9 Exhaustive Algorithms 1298
20.10 Recursion and Variadic Function Templates 1301
20.11 Focus on Software Engineering: Recursion versus Iteration 1303

Review Questions and Exercises 1304
Programming Challenges 1305

CHAPTER 21 Binary Trees 1309

21.1 Definition and Applications of Binary Trees 1309
21.2 Binary Search Tree Operations 1312
21.3 Template Considerations for Binary Search Trees 1329

Review Questions and Exercises 1335
Programming Challenges 1336

Appendix A: The ASCII Character Set 1339
Appendix B: Operator Precedence and Associativity 1341
Quick References 1343
Index 1345
Credit 1363

Online The following appendices are available at www.pearsonhighered.com/
cs-resources.
Appendix C: Introduction to Flowcharting
Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments
Appendix G: Binary Numbers and Bitwise Operations
Appendix H: STL Algorithms
Appendix I: Multi-Source File Programs
Appendix J: Stream Member Functions for Formatting
Appendix K: Unions
Appendix L: Answers to Checkpoints
Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: C-String Manipulation
Case Study 2: High Adventure Travel Agency—Part 1
Case Study 3: Loan Amortization
Case Study 4: Creating a String Class
Case Study 5: High Adventure Travel Agency—Part 2
Case Study 6: High Adventure Travel Agency—Part 3
Case Study 7: Intersection of Sets
Case Study 8: Sales Commission

www.pearsonhighered.com/cs-resources
www.pearsonhighered.com/cs-resources

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Introduction to Flowcharting, p. 20
 Designing a Program with Pseudocode, p. 20
 Designing the Account Balance Program, p. 25
 Predicting the Result of Problem 33, p. 26

Chapter 2 Using cout, p. 32
 Variable Definitions, p. 39
 Assignment Statements and Simple Math Expressions, p. 64
 Solving the Restaurant Bill Problem, p. 83

Chapter 3 Reading Input with cin, p. 87
 Formatting Numbers with setprecision, p. 115
 Solving the Stadium Seating Problem, p. 146

Chapter 4 The if Statement, p. 158
 The if/else Statement, p. 170
 The if/else if Statement, p. 180
 Solving the Time Calculator Problem, p. 228

Chapter 5 The while Loop, p. 242
 The for Loop, p. 257
 Reading Data from a File, p. 284
 Solving the Calories Burned Problem, p. 301

Chapter 6 Functions and Arguments, p. 321
 Value-Returning Functions, p. 334
 Solving the Markup Problem, p. 377

Chapter 7 Accessing Array Elements with a Loop, p. 392
 Passing an Array to a Function, p. 420
 Solving the Chips and Salsa Problem, p. 462

Chapter 8 The Binary Search, p. 474
 The Selection Sort, p. 490
 Solving the Charge Account Validation Modification Problem, p. 508

Chapter 9 Dynamically Allocating an Array, p. 541
 Solving the Pointer Rewrite Problem, p. 563

Chapter 10 Writing a C-String-Handling Function, p. 593
 More about the string Class, p. 599
 Solving the Backward String Problem, p. 616

LOCATION OF VIDEONOTES IN THE TEXT (continued)

Chapter 11 Creating a Structure, p. 623
 Passing a Structure to a Function, p. 639
 Solving the Weather Statistics Problem, p. 670

Chapter 12 Passing File Stream Objects to Functions, p. 683
 Working with Multiple Files, p. 696
 Solving the File Encryption Filter Problem, p. 747

Chapter 13 Writing a Class, p. 758
 Defining an Instance of a Class, p. 763
 Solving the Employee Class Problem, p. 840

Chapter 14 Operator Overloading, p. 869
 Class Aggregation, p. 898
 Solving the NumDays Problem, p. 935

Chapter 15 Redefining a Base Class Function in a Derived Class, p. 970
 Polymorphism, p. 981
 Solving the Employee and ProductionWorker Classes Problem, p. 1015

Chapter 16 Throwing an Exception, p. 1024
 Handling an Exception, p. 1024
 Writing a Function Template, p. 1043
 Solving the Exception Project Problem, p. 1063

Chapter 17 The array Container, p. 1068
 Iterators, p. 1070
 The vector Container, p. 1076
 The map Container, p. 1090
 The set Container, p. 1117
 Function Objects and Lambda Expressions, p. 1153
 The Course Information Problem, p. 1165

Chapter 18 Appending a Node to a Linked List, p. 1172
 Inserting a Node in a Linked List, p. 1179
 Deleting a Node from a Linked List, p. 1185
 Solving the Member Insertion by Position Problem, p. 1210

Chapter 19 Storing Objects in an STL stack, p. 1241
 Storing Objects in an STL queue, p. 1265
 Solving the File Compare Problem, p. 1270

Chapter 20 Reducing a Problem with Recursion, p. 1276
 Solving the Recursive Multiplication Problem, p. 1306

Chapter 21 Inserting a Node in a Binary Tree, p. 1314
 Deleting a Node from a Binary Tree, p. 1320
 Solving the Node Counter Problem, p. 1336

This page intentionally left blank

xvii

Preface

Welcome to Starting Out with C++: From Control Structures through Objects, 10th edition.
This book is intended for use in a two-semester C++ programming sequence, or an acceler-
ated one-semester course. Students new to programming, as well as those with prior course
work in other languages, will find this text beneficial. The fundamentals of programming
are covered for the novice, while the details, pitfalls, and nuances of the C++ language are
explored in depth for both the beginner and more experienced student. The book is written
with clear, easy-to-understand language, and it covers all the necessary topics for an intro-
ductory programming course. This text is rich in example programs that are concise, practi-
cal, and real-world oriented, ensuring that the student not only learns how to implement the
features and constructs of C++, but why and when to use them.

Revel
If you are using this textbook along with Revel for Gaddis Starting Out with C++, 10e,
please understand that there may be some pedagogical differences between the two. Revel,
Pearson’s fully immersive, all-in-one digital learning environment, is design for interactive
online learning. Therefore, some of the learning aids in the textbook had to be removed or
re-imagined in order to create a better online learning experience for students.

Changes in the Tenth Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the previ-
ous edition. Many improvements and updates have been made, which are summarized here:

• New material on the if statement and the switch statement with Initialization

C++ 17 introduced new forms of the if statement and the switch statement that include
an initialization clause. In this edition, Chapter 4 includes new material on this syntax
and shows examples using both.

• New Random Number Generator

Modern C++ provides a new and improved random number generator with an intuitive
syntax for getting a random number within a specified range. This edition replaces the previ-
ous C-style technique for random number generation with the new, modern C++ approach.

• Tuples

Chapter 17, which covers the Standard Template Library, provides a new section on the
tuple library. Tuples are explained and numerous examples of using tuples to store and
retrieve data are given.

xviii Preface

• New Forms of String and Numeric Literals

This edition introduces raw string literals, binary literals, and the use of digit separators
in numeric literals.

• The filesystem Library

Chapter 12 includes a new section on the filesystem library, which was introduced
in C++ 17. The filesystem library allows you to work with files and directories at the
operating system level, performing operations such as copying and deleting files, getting a
list of a directory’s contents, and recursively traversing a directory tree.

• Structured Binding Declarations

Structured binding declarations, which were introduced in C++ 17, provide a concise
syntax for unpacking a collection or data structure and assigning its contents to indi-
vidual variables. This edition shows how to use structured binding declarations to unpack
arrays, structures, and tuples.

• Defaulted and Deleted Operations

Chapter 14 shows how to use the default and delete key words to explicitly instruct the
compiler to either generate or not generate a class’s default constructor, default copy con-
structor, default move constructor, default copy assignment operator, and default destructor.

• Usage of typename Instead of class In Templates

In the code for function and class templates, this edition uses the typename key word
instead of the class key word for declaring type parameters.

• The noexcept Key Word

Chapter 16 in this edition introduces the noexcept key word and discusses its use for
declaring functions that do not throw an exception.

• Enhanced Discussion of Deleting Nodes in a Linked List

Chapter 18’s explanation of deleting a node in a linked list has been expanded with more
detail, including a new figure that illustrates the process of unlinking a node, and pseudo-
code describing the process for deleting a node in either a sorted or an unsorted linked list.

• Variadic Function Templates

Chapter 20 presents a new section on variadic function templates, which allow you to write
a set of function templates that use recursion to process a variable number of arguments.

Organization of the Text
This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, some flexibility is provided. The diagram
shown in Figure P-1 suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose to skip this chapter if the class is already familiar with those topics. Chapters 2
through 7 cover basic C++ syntax, data types, expressions, selection structures, repetition
structures, functions, and arrays. Each of these chapters builds on the previous chapter and
should be covered in the order presented.

 Preface xix

Figure P-1 Chapter dependency chart

Chapters 2–7
Basic Language Elements

Chapter 1
Introduction

Chapter 9
Pointers

Chapter 8
Searching and Sorting Arrays

Chapter 10
Characters, C-Strings, and More

about the string Class

Chapter 11
Structured Data

Chapter 12
Advanced File Operations

Chapter 13
Introduction to Classes

Chapter 14
More about Classes

Chapter 15
Inheritance, Polymorphism,

and Virtual Functions

Chapter 16
Exceptions and Templates

Chapter 17
The Standard Template Library

Chapter 18
Linked Lists

Chapter 20
Recursion

Chapter 19
Stacks and Queues

Chapter 21
Binary Trees

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to Chapter 9.

After Chapter 9 has been covered, Chapter 10, 11, 12 or 13 may be covered. (If you jump to
Chapter 12 at this point, you will need to postpone Sections 12.8, 12.9, and 12.10 until Chapter
11 has been covered.) After Chapter 13, you may cover Chapters 14 through 18 in sequence.
Next, you can proceed to either Chapter 19 or Chapter 20. Finally, Chapter 21 may be covered.

This text’s approach starts with a firm foundation in structured, procedural programming
before delving fully into object-oriented programming and advanced data structures.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the fun-
damentals of programming, problem solving, and software design. The components of pro-
grams, such as key words, variables, operators, and punctuation, are covered. The tools of
the trade, such as pseudocode, flow charts, and hierarchy charts, are also presented.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing data types, identifiers, vari-
able declarations, constants, comments, program output, simple arithmetic operations, and
C-strings. Programming style conventions are introduced and good programming style is
modeled here, as it is throughout the text.

Chapter 3: Expressions and Interactivity

In this chapter, the student learns to write programs that input and handle numeric, char-
acter, and string data. The use of arithmetic operators and the creation of mathematical
expressions are covered in greater detail, with emphasis on operator precedence. Debug-
ging is introduced, with a section on hand tracing a program. Sections are also included on
simple output formatting, on data type conversion and type casting, and on using library
functions that work with numbers.

Chapter 4: Making Decisions

Here, the student learns about relational operators, relational expressions, and how to con-
trol the flow of a program with the if, if/else, and if/else if statements. The condi-
tional operator and the switch statement are also covered. Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

Chapter 5: Loops and Files

This chapter covers repetition control structures. The while loop, do-while loop, and for loop
are taught, along with common uses for these devices. Counters, accumulators, running totals,
sentinels, and other application-related topics are discussed. Sequential file I/O is also intro-
duced. The student learns to read and write text files, and use loops to process the data in a file.

Chapter 6: Functions

In this chapter, the student learns how and why to modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu-
ments should be passed by value versus when they need to be passed by reference. Scope of

xx Preface

variables is covered, and sections are provided on local versus global variables and on static
local variables. Overloaded functions are also introduced and demonstrated.

Chapter 7: Arrays and Vectors

In this chapter, the student learns to create and work with single and multi-dimensional
arrays. Many examples of array processing are provided including examples illustrating
how to find the sum, average, highest, and lowest values in an array, and how to sum the
rows, columns, and all elements of a two-dimensional array. Programming techniques using
parallel arrays are also demonstrated, and the student is shown how to use a data file as an
input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Searching and Sorting Arrays

Here, the student learns the basics of sorting arrays and searching for data stored in them.
The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-
rithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with
reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-
tional comparison of pointers, pointers and arrays, pointers and functions, dynamic memory
 allocation, and more.

Chapter 10: Characters, C-Strings, and More about the string Class

This chapter discusses various ways to process text at a detailed level. Library functions for
testing and manipulating characters are introduced. C-strings are discussed, and the tech-
nique of storing C-strings in char arrays is covered. An extensive discussion of the string
class methods is also given.

Chapter 11: Structured Data

The student is introduced to abstract data types and taught how to create them using struc-
tures, unions, and enumerated data types. Discussions and examples include using pointers
to structures, passing structures to functions, and returning structures from functions.

Chapter 12: Advanced File Operations

This chapter covers sequential access, random access, text, and binary files. The various
modes for opening files are discussed, as well as the many methods for reading and writing
file contents. Advanced output formatting is also covered. The chapter includes a discussion
of operating system paths and introduces the standard filesystem library for accessing files
and directories at the operating system level.

Chapter 13: Introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the funda-
mental concepts of classes. Member variables and functions are discussed. The student learns
about private and public access specifications, and reasons to use each. The topics of con-
structors, overloaded constructors, and destructors are also presented. The chapter presents
a section modeling classes with UML, and how to find the classes in a particular problem.

 Preface xxi

Chapter 14: More about Classes

This chapter continues the study of classes. Static members, friends, memberwise assign-
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section on
class collaborations and the use of CRC cards.

Chapter 15: Inheritance, Polymorphism, and Virtual Functions

The study of classes continues in this chapter with the subjects of inheritance, polymor-
phism, and virtual member functions. The topics covered include base and derived class
constructors and destructors, virtual member functions, base class pointers, static and
dynamic binding, multiple inheritance, and class hierarchies.

Chapter 16: Exceptions and Templates

The student learns to develop enhanced error trapping techniques using exceptions. Discus-
sion then turns to function and class templates as a method for reusing code.

Chapter 17: The Standard Template Library

This chapter discusses the containers, iterators, and algorithms in the Standard Template
Library (STL). The specific containers covered are the array, vector, map, multimap,
unordered_map, set, multiset, unordered_set, and tuple classes. The student then
learns about sorting, searching, permutation, and set algorithms. The chapter concludes
with a discussion of function objects (functors) and lambda functions.

Chapter 18: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked list,
appending a node, traversing the list, searching for a node, inserting a node, deleting a node,
and destroying a list. A linked list class template is also demonstrated.

Chapter 19: Stacks and Queues

In this chapter, the student learns to create and use static and dynamic stacks and queues. The
operations of stacks and queues are defined, and templates for each ADT are demonstrated.

Chapter 20: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for finding factorials, finding a greatest common
denominator (GCD), performing a binary search, and sorting (QuickSort). The classic
Towers of Hanoi example is also presented. For students who need more challenge, there
is a section on exhaustive algorithms. The chapter concludes with a discussion of variadic
function templates, which use recursion to process a variable number of arguments.

Chapter 21: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element,
test for an element, and destroy a tree.

xxii Preface

Appendix A: The ASCII Character Set

A list of the ASCII and Extended ASCII characters and their codes.

Appendix B: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence.

The following appendices are available online at www.pearsonhighered.com/cs-resources.

Appendix C: Introduction to Flowcharting

A brief introduction to flowcharting. This tutorial discusses sequence, decision, case, repeti-
tion, and module structures.

Appendix D: Using UML in Class Design

This appendix shows the student how to use the Unified Modeling Language to design
classes. Notation for showing access specification, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

Appendix E: Namespaces

This appendix explains namespaces and their purpose. Examples showing how to define
a namespace and access its members are given.

Appendix F: Passing Command Line Arguments

Teaches the student how to write a C++ program that accepts arguments from the command
line. This appendix will be useful to students working in a command line environment, such
as Unix, Linux, or the Windows command prompt.

Appendix G: Binary Numbers and Bitwise Operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers

Appendix H: STL Algorithms

This appendix gives a summary of each of the function templates provided by the Standard
Template Library (STL), and defined in the <algorithm> header file.

Appendix I: Multi-Source File Programs

Provides a tutorial on creating programs that consist of multiple source files. Function header
files, class specification files, and class implementation files are discussed.

Appendix J: Stream Member Functions for Formatting

Covers stream member functions for formatting such as setf

Appendix K: Unions

This appendix introduces unions. It describes the purpose of unions and the difference
between a union and a struct, demonstrates how to declare a union and define a union
variable, and shows example programs that use unions.

 Preface xxiii

www.pearsonhighered.com/cs-resources

Appendix L: Answers to Checkpoints

Students may test their own progress by comparing their answers to the Checkpoint exercises
against this appendix. The answers to all Checkpoints are included.

Appendix M: Answers to Odd Numbered Review Questions

Another tool that students can use to gauge their progress.

Features of the Text
Concept
Statements

Each major section of the text starts with a concept statement.
This statement summarizes the ideas of the section.

Example Programs The text has hundreds of complete example programs, each
designed to highlight the topic currently being studied. In
most cases, these are practical, real-world examples. Source
code for these programs is provided so that students can run
the programs themselves.

Program Output After each example program, there is a sample of its screen
output. This immediately shows the student how the program
should function.

In the Spotlight Each of these sections provides a programming problem and
a detailed, step-by-step analysis showing the student how to
solve it.

VideoNotes Videos that provide explanations of specific topics and show
the student how to solve various programming problems are
available for viewing at www.pearsonhighered.com/cs-resources.
Icons appear throughout the text alerting the student to specific
videos.

Checkpoints Checkpoints are questions placed throughout each chapter as a
self-test study aid. These questions allow students to check how
well they have learned a new topic. Answers for all Checkpoint
questions can be downloaded from the book’s companion Web
site at www. pearsonhighered.com/cs-resources.

Notes Notes appear at appropriate places throughout the text. They
are short explanations of interesting or often misunderstood
points relevant to the topic at hand.

Warnings Warnings are notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

Case Studies Case studies that simulate real-world applications appear in many
chapters throughout the text. These case studies are designed to
highlight the major topics of the chapter in which they appear.

xxiv Preface

www.pearsonhighered.com/cs-resources
www. pearsonhighered.com/cs-resources

Review Questions
and Exercises

Each chapter presents a thorough and diverse set of review ques-
tions, such as fill-in-the-blank and short answer, that check the stu-
dent’s mastery of the basic material presented in the chapter. These
are followed by exercises requiring problem solving and analysis,
such as the Algorithm Workbench, Predict the Output, and
Find the Errors sections. Answers to the odd-numbered review
questions and review exercises can be downloaded from the book’s
companion Web site at www.pearsonhighered.com/cs-resources.

Programming
Challenges

Each chapter offers a pool of programming exercises designed
to solidify the student’s knowledge of the topics currently being
studied. In most cases, the assignments present real-world prob-
lems to be solved. When applicable, these exercises include input
validation rules.

Group Projects There are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program’s user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. This process is similar to
the way many professional programs are written and encourages
team work within the classroom.

Modern C++ Throughout the text, new Modern C++ language features are
introduced.

Supplements
Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series Companion Web site at www.pearsonhighered.com/
cs-resources:

● The source code for each example program in the book

● Access to the book’s VideoNotes

● A full set of appendices, including answers to the Checkpoint questions and answers to
the odd-numbered review questions

● A collection of valuable Case Studies

Instructor Resources

The following supplements are available to qualified instructors only:

● Answers to all Review Questions in the text

● Solutions for all Programming Challenges in the text

● PowerPoint presentation slides for every chapter

 Preface xxv

www.pearsonhighered.com/cs-resources
www.pearsonhighered.com/cs-resources
www.pearsonhighered.com/cs-resources

xxvi Contents

● Computerized test bank

● Answers to all Student Lab Manual questions

● Solutions for all Student Lab Manual programs

Visit the Gaddis Series Companion Web site at www.pearsonhighered.com/cs-resources
to access the Instructor Resources. If you do not already have access to the Pearson IRC, please
contact your Pearson representative at Pearson.com/RepLocator.com

Which Gaddis C++ book is right for you?
The Starting Out with C++ Series includes three books, one of which is sure to fit your
course:

● Starting Out with C++: From Control Structures through Objects

● Starting Out with C++: Early Objects

● Starting Out with C++: Brief Version

The following chart will help you determine which book is right for your course.

www.pearsonhighered.com/cs-resources

 Contents xxvii

■   FROM CONTROL STRUCTURES
THROUGH OBJECTS

■   BRIEF VERSION

■   EARLY OBJECTS

LATE INTRODUCTION OF OBJECTS EARLIER INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 13 of the stan-
dard text and the brief text, after control structures,
functions, arrays, and pointers. Advanced OOP
topics, such as inheritance and polymorphism, are
covered in the following two chapters.

Classes are introduced in Chapter 7, after
control structures and functions, but before
arrays and pointers. Their use is then
integrated into the remainder of the text.
Advanced OOP topics, such as inheritance
and polymorphism, are covered in Chapters
11 and 15.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION

INTRODUCTION OF DATA STRUCTURES
AND RECURSION

Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the standard text.
Recursion is covered after stacks and queues, but
before binary trees. These topics are not covered in
the brief text, though it does have appendices dealing
with linked lists and recursion.

Linked lists, stacks and queues, and binary
trees are introduced in the final chapters of
the text, after the chapter on recursion.

Ahmad Abuhejleh
University of Wisconsin–River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Vicki Allan
Utah State University

Karen M. Arlien
Bismark State College

Mary Astone
Troy University

Ijaz A. Awan
Savannah State University

Robert Baird
Salt Lake Community College

Don Biggerstaff
Fayetteville Technical Community College

Michael Bolton
Northeastern Oklahoma State University

Bill Brown
Pikes Peak Community College

Robert Burn
Diablo Valley College

Charles Cadenhead
Richland Community College

Randall Campbell
Morningside College

Wayne Caruolo
Red Rocks Community College

Cathi Chambley-Miller
Aiken Technical College

Chia-Chin Chang
Lakeland College

C.C. Chao
Jacksonville State University

Joseph Chao
Bowling Green State University

Royce Curtis
Western Wisconsin Technical College

Joseph DeLibero
Arizona State University

Michael Dixon
Sacramento City College

Jeanne Douglas
University of Vermont

Michael Dowell
Augusta State University

Qiang Duan
Penn State University—Abington

William E. Duncan
Louisiana State University

Daniel Edwards
Ohlone College

Judy Etchison
Southern Methodist University

Dennis Fairclough
Utah Valley State College

Xisheng Fang
Ohlone College

Mark Fienup
University of Northern Iowa

Richard Flint
North Central College

Ann Ford Tyson
Florida State University

Jeanette Gibbons
South Dakota State University

xxviii Preface

Acknowledgments
There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and expertise.

 Preface xxix

James Gifford
University of Wisconsin–Stevens Point

Leon Gleiberman
Touro College

Barbara Guillott
Louisiana State University

Pranshu Gupta
DeSales University

Ranette Halverson, Ph.D.
Midwestern State University

Ken Hang
Green River Community College

Carol Hannahs
University of Kentucky

Charles Hardnett
Gwinnett Technical College

Dennis Heckman
Portland Community College

Ric Heishman
George Mason University

Michael Hennessy
University of Oregon

Ilga Higbee
Black Hawk College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Mary Hovik
Lehigh Carbon Community College

Richard Hull
Lenoir-Rhyne College

Kay Johnson
Community College of Rhode Island

Chris Kardaras
North Central College

Willard Keeling
Blue Ridge Community College

A.J. Krygeris
Houston Community College

Sheila Lancaster
Gadsden State Community College

Ray Larson
Inver Hills Community College

Michelle Levine
Broward College

Jennifer Li
Ohlone College

Norman H. Liebling
San Jacinto College

Cindy Lindstrom
Lakeland College

Zhu-qu Lu
University of Maine, Presque Isle

Heidar Malki
University of Houston

Debbie Mathews
J. Sargeant Reynolds Community College

Svetlana Marzelli
Atlantic Cape Community College

Rick Matzen
Northeastern State University

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

Jie Meichsner
St. Cloud State University

Dean Mellas
Cerritos College

Lisa Milkowski
Milwaukee School of Engineering

Marguerite Nedreberg
Youngstown State University

Lynne O’Hanlon
Los Angeles Pierce College

Frank Paiano
Southwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Ron Del Porto
Penn State Erie, The Behrend
College

Tino Posillico
SUNY Farmingdale

Frederick Pratter
Eastern Oregon University

Susan L. Quick
Penn State University

Alberto Ramon
Diablo Valley College

Bazlur Rasheed
Sault College of Applied Arts and
Technology

Farshad Ravanshad
Bergen Community College

Susan Reeder
Seattle University

Sandra Roberts
Snead College

Lopa Roychoudhuri
Angelo State University

Lisa Rudnitsky
Baruch College

Dolly Samson
Weber State University

Ruth Sapir
SUNY Farmingdale

Jason Schatz
City College of San Francisco

Dr. Sung Shin
South Dakota State University

Bari Siddique
University of Texas at Brownsville

William Slater
Collin County Community College

Shep Smithline
University of Minnesota

Richard Snyder
Lehigh Carbon Community College

Donald Southwell
Delta College

Caroline St. Claire
North Central College

Kirk Stephens
Southwestern Community College

Cherie Stevens
South Florida Community College

Dale Suggs
Campbell University

Mark Swanson
Red Wing Technical College

Ann Sudell Thorn
Del Mar College

Martha Tillman
College of San Mateo

Ralph Tomlinson
Iowa State University

David Topham
Ohlone College

Robert Tureman
Paul D. Camp Community College

Arisa K. Ude
Richland College

Peter van der Goes
Rose State College

Stewart Venit
California State University, Los Angeles

Judy Walters
North Central College

John H. Whipple
Northampton Community College

Aurelia Williams
Norfolk State University

Chadd Williams
Pacific University

Vida Winans
Illinois Institute of Technology

xxx Preface

 Preface xxxi

I would like to thank the faculty, staff, and administration at Haywood Community College
for the opportunity to build a career teaching the subjects that I love. I would also like to
thank my family and friends for their support in all of my projects.

It is a great honor to be published by Pearson, and I am extremely fortunate to have Tracy
Johnson as my Content Manager. She and her colleagues Holly Stark, Erin Sullivan, Alicia
Wilson, Rachel Reeve, Scott Disanno, Bob Engelhardt, Timothy Gardiner, and Carol Snyder
have worked tirelessly to produce and promote this book. Thanks to you all!

About the Author
Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
two decades of experience teaching computer science courses, primarily at Haywood Com-
munity College. Tony is a highly acclaimed instructor who was previously selected as the
North Carolina Community College Teacher of the Year and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out with series includes introductory textbooks covering Programming Logic
and Design, Alice, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python,
and App Inventor, all published by Pearson.

This page intentionally left blank

1

1.1 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to conduct business transac-
tions, communicate with customers and coworkers, analyze data, make presentations, con-
trol machines in manufacturing facilities, and many many other tasks. At home, people use
computers for tasks such as paying bills, shopping online, social networking, and playing
computer games. And don’t forget that smartphones, MP3 players, DVRs, car navigation
systems, and many other devices are computers as well. The uses of computers are almost
limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means computers are not designed to do just one job, but any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task.
For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two com-
monly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
without software, a computer can do nothing. All of the software we use to make our
computers useful is created by individuals known as programmers or software developers.
A programmer, or software developer, is a person with the training and skills necessary
to design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers working in business, medicine, govern-
ment, law enforcement, agriculture, academia, entertainment, and almost every other field.

Introduction to Computers
and Programming1

C
H

A
P

T
E

R

TOPICS
 1.1 Why Program?
 1.2 Computer Systems: Hardware

and Software
 1.3 Programs and Programming

Languages

 1.4 What Is a Program Made of?
 1.5 Input, Processing, and Output
 1.6 The Programming Process
 1.7 Procedural and Object-Oriented

Programming

2 Chapter 1 Introduction to Computers and Programming

Figure 1-1 A word processing program and a presentation program

Computer programming is both an art and a science. It is an art because every aspect of
a program should be carefully designed. Listed below are a few of the things that must be
designed for any real-world computer program:

• The logical flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• The program’s “user-friendliness”
• Documentation, help files, tutorials, and so on

There is also a scientific, or engineering, side to programming. Because programs rarely
work right the first time they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do not understand English or other human languages. Languages such as C++
have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming make writing computer software like
designing a car: Both cars and programs should be functional, efficient, powerful, easy to
use, and pleasing to look at.

1.2 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

 1.2 Computer Systems: Hardware and Software 3

Hardware
Hardware refers to the physical components of which a computer is made. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

• The central processing unit (CPU)
• Main memory
• Secondary storage devices
• Input devices
• Output devices

The organization of a computer system is depicted in Figure 1-2.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Iko/Shutterstock

A
q

ui
la

/
Sh

ut
te

rs
to

ck

Pe
te

r
G

ue
ss

/
Sh

ut
te

rs
to

ck

StockPhotosArt/Shutterstock

Jocic/Shutterstock

A
rt

 g
al

le
ry

/
Sh

ut
te

rs
to

ck

Elkostas/Shutterstock

Tkemot/Shutterstock

Chiyacat/
ShutterstockFe

ng
 Y

u/
Sh

ut
te

rs
to

ck

N
ik

ita
 R

og
ul

/
Sh

ut
te

rs
to

ck

Kastianz/Shutterstock

Figure 1-2 Typical devices in a computer system

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical compo-
nents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two women in

4 Chapter 1 Introduction to Computers and Programming

the photo are working with the historic ENIAC computer. The ENIAC, considered by many
to be the world’s first programmable electronic computer, was built in 1945 to calculate
artillery ballistic tables for the U.S. Army. This machine, which was primarily one big CPU,
was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern-day microprocessor. In addition to being much smaller than the
old electromechanical CPUs in early computers, microprocessors are also much more powerful.

Figure 1-3 The ENIAC computer

U.S. Army Center of Military History

Figure 1-4 A microprocessor

Creativa/Shutterstock

 1.2 Computer Systems: Hardware and Software 5

The CPU’s job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arith-
metic and logic unit (ALU). The control unit coordinates all of the CPU’s operations. It
is responsible for determining where to get the next instruction and regulating the other
major components of the computer with control signals. The arithmetic and logic unit, as
its name suggests, is designed to perform mathematical operations. The organization of the
CPU is shown in Figure 1-5.

Central Processing Unit

Instruction
(Input)

Arithmetic and
Logic Unit

Control Unit

Result
(Output)

Figure 1-5 Organization of a CPU

A program is a sequence of instructions stored in the computer’s memory. When a com-
puter is running a program, the CPU is engaged in a process known formally as the fetch/
decode/execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruc-
tion in the sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control
unit decodes the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer
(such as the ALU, a disk drive, or some other device). The signal
causes the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data with which the program
is working. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in small chips.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do

6 Chapter 1 Introduction to Computers and Programming

anything meaningful, a computer must have lots of bytes. Most computers today have bil-
lions of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered
from lowest to highest. A byte is identified by its address in much the same way a post
office box is identified by an address. Figure 1-6 shows a group of memory cells with their
addresses. In the illustration, sample data is stored in memory. The number 149 is stored
in the cell with the address 16, and the number 72 is stored at address 23.

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

Figure 1-6 Memory

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary mem-
ory and loaded into main memory as needed. Important data such as word processing
documents, payroll data, and inventory records is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a circular disk. Solid-state drives, which
store data in solid-state memory, are increasingly becoming popular. A solid-state drive has
no moving parts and operates faster than a traditional disk drive. Most computers have
some sort of secondary storage device, either a traditional disk drive or a solid-state drive,
mounted inside their case. External storage devices can be used to create backup copies
of important data or to move data to another computer. For example, USB (Universal
Serial Bus) drives and SD (Secure Digital) memory cards are small devices that appear in
the system as disk drives. They are inexpensive, reliable, and small enough to be carried
in your pocket.

Input Devices

Input is any data the computer collects from the outside world. The device that col-
lects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, touchscreen, scanner, digital camera, and

 1.2 Computer Systems: Hardware and Software 7

microphone. Disk drives, CD/DVD drives, and USB drives can also be considered input
devices because programs and information are retrieved from them and loaded into the
computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The information is sent to an output device,
which formats and presents it. Common output devices are screens, printers, and speakers.
Storage devices can also be considered output devices because the CPU sends them data to
be saved.

Software
If a computer is to function, software is not optional. Everything a computer does, from
the time you turn the power switch on until you shut the system down, is under the control
of software. There are two general categories of software: system software and application
software. Most computer programs clearly fit into one of these two categories. Let’s take
a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally referred
to as system software. System software typically includes the following types of programs:

• Operating Systems
 An operating system is the most fundamental set of programs on a computer. The

operating system controls the internal operations of the computer’s hardware, man-
ages all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

• Utility Programs
 A utility program performs a specialized task that enhances the computer’s operation

or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

• Software Development Tools
 The software tools that programmers use to create, modify, and test software are

referred to as software development tools. Compilers and integrated development
environments, which we will discuss later in this chapter, are examples of programs
that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications—Microsoft Word, a word processing program, and Microsoft
PowerPoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, web browsers, and game programs.

8 Chapter 1 Introduction to Computers and Programming

Checkpoint
1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.9 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, web
browsers, and game programs belong to what category of software?

1.3 Programs and Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write com-
puter programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions that
tells the computer how to solve a problem or perform a task. For example, suppose we want
the computer to calculate someone’s gross pay. Here is a list of things the computer should do:

 1. Display a message on the screen asking “How many hours did you work?”
 2. Wait for the user to enter the number of hours worked. Once the user enters a number,

store it in memory.
 3. Display a message on the screen asking “How much do you get paid per hour?”
 4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it

in memory.
 5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.
 6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are sequentially ordered.
Step 1 should be performed before Step 2, and so forth. It is important that these instruc-
tions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process

 1.3 Programs and Programming Languages 9

instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s
and 0s). The binary numbers form machine language instructions, which the CPU interprets
as commands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine lan-
guage. If you wrote a machine language program for computer A then wanted to run it on
computer B, which has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the
task of programming. A program can be written in a programming language, such as C++,
which is much easier to understand than machine language. Programmers save their pro-
grams in text files, then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The “Program Output with Example Input” shows what the program will display on the
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

NOTE: The line numbers that are shown in Program 1-1 are not part of the program.
This book shows line numbers in all program listings to help point out specific parts
of the program.

Program 1-1

 1 // This program calculates the user's pay.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double hours, rate, pay;
 8
 9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;

(program continues)

